

3.有效载荷loaddata

对于搬运应用的机器人,应该正确设定夹 具的质量、重心tooldata 以及搬运对象的 质量和重心数据loaddata。

Loaddata设定的参数

可以通过LoadIdentify进行自动测量

搬运对象的重量
 搬运对象的重心

 load.cog.x
 load.cog.y
 load.cog.z [mm]

load.mass [kg]

智邦人才网

www.zbtalent.com

新专业● 新技能 ●新岗位

Loaddata设定的操作步骤

新专业● 新技能 ●新岗位

1. "手动操纵"界面,选择"有效载荷"

点击属性并更改 ——		
机械单元:	ROB_1	X: 1089.4 mm
绝对精度:	Off	Y: 258.5 mm
动作模式:	线性	2: 1052.5 mm q1: 0.50000
坐标系:	工具	q2: 0.0 q3: 0.86603
工具坐标:	tool0	q4: 0.0
工件坐标:	wobj0	位置格式
有效载荷:	load0	提纵杆方向
操纵杆锁定:	无	Q & (O)
増量:	无	X Y Z

2	畄土	"立⊂Z事 "
۷.	半山	刺建…

当前选择:	load0		
从列表中选择一个项	页目。		
有效载荷名称 /	模块		范围 1 到 1 共
load0	RAPID/T_ROB1/BASE		全局
新建	编辑	确定	取消

3. 对有效载荷数据属性进行设定。 4. 单击"初始值"。

新专业●

▲ 新数据声明			
数据类型: loaddata	当前任	务: T_ROB1	
名称:	load1		
范围:	任务		_
存储类型:	可变量		▼
任务:	T_ROB1		•
模块:	, Module1		
例行程序:	<无>		
维数	, [<无>]	
初始值		确定	取消
技能 ●新岗位		智邦人才网	www.zbtalent.

5. 对有效载荷的数据根据实际的情况进行设定, 各参数代表的含义请参考下面的有效载荷参数表。 6. 单击"确定"。

				名称	参数	单位
⊱ 编辑				有 效	load.mass	kg
夕称·	loadi			载 荷		
			有 效	load.cog.x	mm	
名称	。 │值	数据类型	1 到 6 共 14	载 荷	load.cog.y	
load1:	[0, [0, 0, 0], [1, 0, 0, 0],	loaddata		力矩	load.aom.q1	1
mass :=	0	num		轴方	load.aom.q2	
cog:	[0,0,0]	pos	1	向	load.aom.q3	
x :=	0	חנות			load.aom.q4	
y :=	0	mun		有 效	ix	kg • m²
z :=	0	num	$\not{\sim}$	载荷的转	iy iz	
	撤消	确定	取消	动惯	12	
				量		
新专业● 新技	能 ●新岗位		智邦人才网	刘 www.	zbtalent.co	m

在RAPID 编程中,需要对有效载荷的情况 进行实时的调整:

10	TASK PERS loaddata load1:=[0, [0,0,0], [1,0,0,0], 0,0,	
11	PROC main()	
14	Set do1;	
13	GripLoad load1;	
14	MoveJ *, v1000, z50, tool0;	
15	MoveJ *, v1000, z50, tool0;	
16	MoveJ *, v1000, z50, tool0;	
17	Reset do1;	
18	GripLoad load0;	
19	ENDPROC	
20		
21	ENDMODULE	

Reset do1;夹具松开 GripLoad load0;将搬运对象清除为load0

新专业● 新技能 ●新岗位

LoadIdentify

LoadIdentify是ABB机器人开发的用于自动识 别安装在六轴法兰盘上的工具(tooldata) 和载荷(loaddata)的重量,以及重心。

手持工具的应用中,应使用LoadIdentify识别 工具的重量和重心。

手持夹具的应用中,应用使用LoadIdentify识别夹 具和搬运对象的重量和重心。

新技能 ●新岗位

新专业

LoadIdentify的操作步骤

新专业● 新技能 ●新岗位

```
智邦人才网 www.zbtalent.com
```


新专业● 新技能 ●新岗位

新专业● 新技能 ●新岗位

智邦人才网

www.zbtalent.com

使用LoadIdentify的方法3

新专业● 新技能 ●新岗位

使用LoadIdentify的方法 4 电机开始 于物 电机升迫 M 14-58965 (192.168.183.1) 王在放行 (進度 100%) 14-50565 (192.168.133.1) 正在运行 (速度 100%) T_BOB1 TrheadF3 T_ROB1 TPResdPR 全都任务 全部任务 1. Switch back to manual mode reduced sp Result of Tool identification: eed Mass (kg) - 1.4 2. Start program execution Center of gravity (mm) x = 24.4Fress OK to continue | $\mathbf{v} = \mathbf{0}$ z = 143.2Measure Accuracy (%) = 77 WARNING: LOW ACCURACY ! Step13 识别完成,切 Update Tool tool1 anyhow 7 换回手动状态 Step14 确认识别数据 是否正确,最后点击 YES数据就自动保存 OK No Yes 是平动静脉 T_R031 B- 055 20 1 手动物部 TT BODS 20 自幼生...

其他程序数据

ABB工业机器人对于点位的定义

ABB工业机器人的编程语言 RAPID 中,对于点位的描述,专门有一种数据 类型: robtarget,如下面对于点 Target_10 的定义:

CONST robtarget

Target_10:=[[103.446614369839,177.778223757339,29.9999999999999999],[6.07064838351457E-17,-

0.130526192220051,0.99144486137381,7.99216021664582E-

18],[0,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]];

其结构解释如下: < dataobject of robtarget > < trans of pos > < x of num > < y of num > < z of num > < rot of orient > < q1 of num > < q2 of num > < q3 of num > < q4 of num > < robconf of confdata > < cf1 of num > < cf4 of num > < cf6 of num > < cfx of num > < eax_a of num > < eax_b of num > < eax_c of num > < eax_d of num > < eax_e of num > < eax_f of num >

> 其中,XYZ是TCP在参考坐标系中的坐标值;q1\q2\q3\q4是四 元数来表示TOOL坐标系在参考坐标系中的姿态,有的机器人系统是 用欧拉角来表示姿态的的;cf1\cf4\cf6\cfx表示1\4\6\x轴的配置, 因为对于一个点,机器人各轴可能有两种以上姿态可以到达; eax_a\~\f 表示外轴的位置。